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Relation is a wide class of important mathematical objects such as func-
tions, orders and and equivalence relation.

1. General relations

In many situation we would like to describe that certain objects relate to
other object. To turn relations into a formal mathematical object, we need
to define them as sets. First, how would we code that an object a relates to
an object b? we can use the ordered pair 〈a, b〉. A relations describes many
such collections, hence it is a set of ordered pairs:

Definition 1.1. A relation from the set A to the set B is set R ⊆ A×B.

Example 1.2. (1) R = {〈1, 2〉, 〈1, 3〉} is a relation from {1, 2} tp {1, 2, 3}
since

R ⊆ {1, 2} × {1, 2, 3}

. R is also a relation from R to N.
(2) {〈1,

√
2〉, 〈2, 4〉} is not a relation from N to N.

(3)

idN = {〈n, n〉 | n ∈ N}

≤N= {〈n,m〉 ∈ N2 | ∃k ∈ N.n+k = m}, <N= {〈n,m〉 ∈ N2 | ∃k ∈ N+.n+k = m}

are three relations from N to N. Note that

≤=< ∪idN

(4) A = {〈x, y〉 ∈ R2 | x − y ∈ Q} for example 〈3 +
√

2,
√

2〉 ∈ A,
〈1, π〉 /∈ A.

(5) R = {〈X,Y 〉 ∈ P (N) × P (Z) | X ⊆ Y }. R is a relation from P (N)
to P (Z).

(6) It is sometimes convinient to imagine a relation as two potato’s rep-
resenting the sets A and B, and then and arrows from A to B. For
example, if R = {〈1, 2〉, 〈2, a〉, 〈2, b〉} From {1, 2, 3}, to {2, a, b}:
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(7) S = {〈x, y〉 ∈ Z2 | x divides y}, Then S is a relation from Z to Z.
(8) In general, for every set A we denote the identity relation on the set

A by idA = {〈a, a〉 | a ∈ A}.
(9) A funciton is also a relation. For example, consider the function f :

R→ R, defined by f(x) = x2. This function establishes connections
between the real number x and the real number x2, So the formal
definition of the function as a set is f = {〈x, x2〉 | x ∈ R}.

Remark 1.3. In most cases a relation (i.e. a set of pairs) has a “meaning”,
which is some notion we already familiar with, just not in terms of sets of
pairs. In the previous examples, ≤N is just a formal representation for the
usual ≤ where we only consider natural numbers. The relation D is just the
divisibility relation on between integers, and idA is just the equality relation
where we only consider elements of the set A. However, a general relation
R, is just an abstract object. It does not necessarily have a meaning as in
the previous examples. Examples (1), (2), (6) do not arise from a natural
notion. We can always artificially force a meaning to it, but this would be
of no use.

Important: When handling general relations, do not try to find a “mean-
ing” for it. Instead, you should simply think of a set of pairs. When handling
a specific relation, it is important to understand the idea behind it (by find-
ing examples pairs of elements which belongs to the relation).

2. Relations on a single set

The first kind of relations we are interested in are relations R from a set
A to itself.

Definition 2.1. A relation R from A to A (i.e. R ⊆ A2) is called a relation
on the set A.

For example, ≤N is a relation of N, idA is a relation on A and the divisi-
bility relation S is a relation in Z.

Example 2.2. Let us denote by ⊆A= {〈X,Y 〉 ∈ P (A)2 | X ⊆ Y }. Then
⊆A is a relation on A.
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Instead of writing for example 〈2, 3〉 ∈≤N or 〈{1}, {39, 1, 14}〉 ∈⊆Z, we
would like to keep the usual notation that 2 ≤N3 and {1} ⊆Z {39, 1, 14}.
Hence we have the following notation:

Notation 2.3. Given a general relation R on a set A, we define aRb ≡
〈a, b〉 ∈ R.

This notation is not convenient when we have relations from a to b. We
will have a different notation specifically for functions in the next chapter.

In order to develop some theory and prove interesting theorems about
relations, we will need to add more structure/properties to the relation. The
most important kind of relations on a single set are equivalence relations and
orders. In this chapter we will only discuss Equivalence realtions.

2.1. equivalence relations. As we have seen previously, sets are equal if
and only if they have the same elements. This is a quit rigid equality. There
are mathematical theories where it is convenient to identify between two
objects although they are not equal as sets, we say that they are equivalent.
For example, to define a rational numbers n

m from the integers, it is natural

to identify it with the pair 〈n,m〉. However, note that while 1
2 = 2

4 , the
pairs 〈1, 2〉, 〈2, 4〉 are distinct. What we usually do, is to set some criterion
to determine when two objects are equivalent. Formally, this would mean
that we have some relation R on a set A, and two members a, b ∈ A will
be equivalent if aRb. In our example of rationals, we would need to find
a criterion which makes 〈1, 2〉, 〈2, 4〉 equivalent for examples, and not only
them, but also 〈4, 2〉, 〈8, 2〉 and 〈 − 1, 9〉, 〈2,−18〉 and so on.

Example 2.4. To find the right criteria for the rations, we need to express
the equality a

b = c
d in terms of integers, so let simply cross-multiply the

equation and get ad = bc. Going back to the beginning, we define a relation
R on the set of pairs Z × Z \ {0}. Note that this is not a relation on Z,
rather then on pairs, and we exclude 0 by only considering pairs of the form
〈a, b〉 where b 6= 0. Now we set the criterion that 〈a, b〉R〈c, d〉 (namely, the
pairs 〈a, b〉 and 〈c, d〉 are equivalent) if and only if ad = bc. Formally, we
define the relation R as follows:

R =
{
〈〈a, b〉, 〈c, d〉〉 ∈ (Z× Z \ {0})2 | ad = bc

}
Since equivalence relations imitate equality, there are some necessary

properties which must be posed on a general relation in order for it to be
an equivalence relation:

Definition 2.5 (Properties of relations and equivalence relation). Let R be
a relation on a set A. We say that:

(1) R is reflexive (on A) if: ∀a ∈ A.aRa.
(2) R is symmetric if: ∀a, b ∈ A.aRb⇒ bRa.
(3) R is transitive if: ∀a, b, c ∈ A.(aRb) ∧ (bRc)⇒ aRc.
(4) R is an equivalence relation if it is reflexive, symmetric and transitive.
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Example 2.6. (1) Let us give some non mathematical relations on the
“set” of all humans to illustrate these properties:
(a) The brotherhood relation: two humans x, y are brothers if and

only if they have the same biological parents.1

The brotherhood relation is reflexive: Indeed, every human x
is a brother of himself, as by this definition x has the same two
biological parents as himself.
The brotherhood relation is symmetric: If x is a brother of y
then clearly y is a brother of x because they both have the
same biological parents.
The brotherhood relation is transitive: Suppose that x is a brother
of y and y is a brother of z. Then x as the same two biological
parents as y and y has the same two biological parents as z.
Then x has the same two biological parents as z, hence x and
z are brothers
We conclude that the brotherhood relation is an equivalence
relation.

(b) The descendent relation: for two humans (dead or alive) we
say that x is a descendent of y (or that y is an ancestor of
x) is x is the son of a son of a son ... if a son of y. It is a
matter of definition if this relation is reflexive, namely, is x is a
descendent of himself. This is not symmetric, since for example,
Jeffery Jordan is a descendent (the son of) Michael Jordan, but
Michael Jordan is not the a descendent of Jeffery Jordan.2

(2) Let A = {1, 2, 3, 4, 5, 6} then

E = {〈1, 1〉, 〈2, 2〉, 〈3, 3〉, 〈4, 4〉, 〈5, 5〉, 〈6, 6〉︸ ︷︷ ︸
idA

, 〈1, 5〉, 〈5, 1〉, 〈2, 3〉, 〈3, 2〉, 〈3, 6〉, 〈6, 3〉, 〈2, 6〉, 〈6, 2〉}

is an equivalence relation on A.
(3) Among the most important equivalence relations is the congruence

relation. Recall that for a natural number n > 0 and two integers
z1, z2 we say that z1 ≡ z2 mod n if z1 mod n = z2 mod n. In
order to avoid the use modulo in the definition congruency, we can
formulate it as follows:

En = {〈z1, z2〉 ∈ Z2 | z1 − z2 is divisible by n}
Let us prove that En is an equivalence relation.
Reflexive: we want to prove that for every z ∈ Z, zEnz. Let z ∈ Z,
we want to prove that z−z = 0 is divisible by n, but this is true sine
every number divides 0(recall the formal definition of divisibility and

1This is simply a convenient choice of definition, one can consider other definitions for
brotherhood.

2Note that in order to prove that a relation is not reflexive/symmetric/transitive we
should always give a specific counter example, since these properties are universal prop-
erties and therefore their negation is an existential property.
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prom this easy fact!).
Symmetric: We want to prove that for every z1, z2 ∈ Z, if z1Enz2

then z2Enz1. Let z1, z2 ∈ Z and suppose (this is an implication!)
that z1Enz2, we want to prove that z2Enz1.

3 By definition of En,
we conclude that n divides z1− z2 and therefore there is k ∈ Z such
that z1 − z2 = k · n. Hence z2 − z1 = (−k) · n and also −k ∈ Z. It
follows again by the definition of En that z2Enz1.
Transitive: Suppose that z1Enz2 and z2Enz3, we want to prove that
z1Enz3. By definition of En, this means that n divides z1 − z2 and
also z2 − z3. By definition f divisibility, there are k1, k2 ∈ Z such
that z1 − z2 = k1n and z2 − z3 = k2n. Summing the two equations,
we get:

z1 − z3 = (z1 − z2) + (z2 − z3) = k1n+ k2n = (k1 + k2)n)

Since k1 + k2 ∈ Z, it follows that z1 − z3 is divisible by n. By the
definition of En, it follow that z1Enz3.

We conclude that En is an equivalence relation.
(4) S = {〈n,m〉 ∈ Z2 | ∃k ∈ Zn + k2 = m} is reflexive, not symmetric,

since for example 0S1 (as 0 + 12 = 1) but 1 6 S0 (prove that!). It is
not transitive since for example 1 + 12 = 2 and 2 + 12 = 3 however
3− 1 = 2 is not a square of a natural (or even rational) number.

(5) Let us prove that the relation

R =
{
〈〈a, b〉, 〈c, d〉〉 ∈ (Z× (Z \ {0}))2 | ad = bc

}
we use to construct the rational numbers is indeed an equivalence
relation on Z× (Z \ {0}):
Reflexive: Let 〈a, b〉 ∈ Z × (Z \ {0}), 4 we want to prove that
〈a, b〉R〈a, b〉. This follows, since ab = ab and by the definition of
R.
Symmetric: Suppose that 〈a, b〉R〈c, d〉, we want to prove that 〈c, d〉R〈a, b〉.
By our assumption we see that ad = bc, and since we can switch the
order of number multiplication we get that da = cb and therefore
〈c, d〉R〈a, b〉.
Transitive: Suppose that 〈a, b〉R〈c, d〉, 〈c, d〉R〈e, f〉. We want to
prove that 〈a, c〉R〈e, f〉. By the assumption we have that ad = bc
and cf = de. Note that adf = bcf = bde and since5 d 6= 0, we can
eliminate it from the equation to see that af = be. By definition of
R, it follows that 〈a, b〉R〈e, f〉.

It follows that R is an equivalence relation.

3Usually, we will start directly with “suppose that z1Enz2, we want to prove that
z2Enz1”.

4We want to prove that ∀a ∈ A.aRa. In our case A = Z × (Z \ {0}) is a set of pairs!
hence we want to prove that ∀〈a, b〉 ∈ Z× (Z \ {0}).〈a, b〉R〈a, b〉.

5Indeed 〈c, d〉 ∈ Z× Z \ {0}, c ∈ Z and d ∈ Z \ {0}. Therefore d 6= 0.
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(6) For any set A, the identity relation idA and A×A are always equiv-
alence relations on the set A.

(7) Here are two examples of equivalence relations on R3:

H1 = {〈〈a, b, c〉, 〈a′, b′, c′〉〉 ∈ R3 | a = a′}
H2 = {〈〈a, b, c〉, 〈a′, b′, c′〉〉 ∈ R3 | a+ b+ c = a′ + b′ + c′}.

The equivalence criterion that the relation H1 sets is to identify
between triples with the same first coordinate. The equivalence that
H2 sets is to identify triples with the same sum.

(8) Here is an equivalence relations on the set P (N){∅}:
T1 = {〈X,Y 〉 ∈ (P (N) \ {∅})2 | min(X) = min(Y )}

T1 identifies sets with the same minimal elements. Here is an equiv-
alence relation on the set P (N):

T2 = {〈X,Y 〉 ∈ (P (N) \ {∅})2 | X ∩ Neven = X ∩ Nodd}
T2 identifies sets which includes exactly the same even numbers.

Back to our example of the rational numbers, what is the object 1
2? is

it 〈1, 2〉 or is it 〈2, 4〉? the definition of 1
2 is just the set of those pairs

{〈1, 2〉, 〈2, 4〉, 〉3, 6〉, 〈 − 1,−2〉....}. The point is that we “glue” together all
the conditions which are equivalent to 〈1, 2〉. Formally, we call this an
equivalence class:

Definition 2.7. Let E be an equivalence relation on a set A. The equiva-
lence class of an element a ∈ A is the set of all conditions b ∈ A such that
a is E-equivalent to b. Formally, we denote the equivalence class of a by

[a]E = {b ∈ A | aEb}

Example 2.8. We use the same notations from the previous example.

(1) In the brotherhood relation we have for example the following equiv-
alence classes:

[Orville Wright]brotherhood = {Orville Wright, Wilbur Wright}
[Steph Curry]brotherhood = {Steph Curry, Seth Curry, Sydel Curry}

[Kim Kardashian]brotherhood = {Kim Kard., Kourtney Kard., Khloé Kard., Rob Kard.}
(2) For A = {1, 2, 3, 4, 5, 6} and E from example (2), We have that:

[1]E = {1, 5}
[2]E = {2, 3, 6}
[3]E = {2, 3, 6}

[4]E = {4}
[5]E = {1, 5}

[6]E = {2, 3, 6}
This is not a coincidence that [1]E = [5]E and that [2]E = [3]E =
[6]E , can you guess way?
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(3) The equivalence classes of En are

[0]En = {0, n,−n, 2n,−2n, 3n, ....} = {zn | z ∈ Z}

[1]En = {1, n− 1,−n+ 1, 2n− 1,−2n+ 1, ...} = {zn+ 1 | z ∈ Z}
A general equivalence class is just:

[i]En = {zn+ i | z ∈ Z}
and i ≡ j mod n if and only if [i]En = [j]En .

(4) Using equivalence classes and the equivalence relation R we can now
formally define the rational number n

m = [〈n,m〉]R. For example, the

number 1
2 is just [〈1, 2〉]R. We will see later that [〈1, 2〉]R = [〈2, 4〉]R

for example, where the last equality is an actual set equality!
(5) The equivalence class of a general triple 〈a, b, c〉 ∈ R3 has the form:

[〈a, b, c〉]H1 = {〈a, x, y〉 | x, y ∈ R}
and

[〈a, b, c〉]H2 = {〈x, y, (a+ b+ c− x− y)〉 | x, y ∈ R}
(6) We have fore example

[{4, 7, 3, 22}]T1 = {X ∈ P (N) | 3 = min(X)}
and

[{4, 7, 3, 22}]T2 = {X ∈ P (N) | X ∩ N = {2, 22}}

Proposition 2.9. Let E be an equivalence relation on A. Then for every
a, b ∈ A:

(1) Either [a]E = [b]E.
(2) Or [a]E ∩ [b]E = ∅

Moreover, [a]E = [b]E if and only if aEb.

Proof. Let a, b ∈ A. We formally need to prove a ∨-statement. Let us split
into cases:

(1) Suppose [a]E ∩ [b]E = ∅, the (2) holds and we are done.
(2) Suppose [a]E ∩ [b]E 6= ∅. We want to prove that [a]E = [b]E , which

is sets equality. Let us prove a double inclusion:
(a) [a]E ⊆ [b]E : Let x ∈ [a]E . We want to prove that x ∈ [b]E . Let

c ∈ [a]E ∩ [b]E , which exists by the assumption in this case. By
definition of equivalence relation, xEa, cEa and cEb.
• By symmetry, since cEa, then aEc.
• By transitivity, since xEa and aEc, then xEc.
• Again by trasitivity since xEc and cEb, xEb.

By the definition of equivalence class it follows that x ∈ [b]E .
(b) [b]E ⊆ [a]E : Follows from the symmetry between a and b.

This concludes the proof that [a]E = [b]E or [a]R∩[b]E = ∅. For the moreover
part, we nee to prove a double implication:
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(1) =⇒: Suppose that [a]E = [b]E , we need to prove that aEb. Since
E is reflexive, aEa and therefore a ∈ [a]E . By the equality of the
set [a]E = [b]E we conclude that a ∈ [b]E and by the definition of
equivalence class we conclude that aEb.

(2) ⇐=: Suppose that aEb, we need to prove that [a]E = [b]E . Again
since E is reflexive we have that a ∈ [a]E and by the definition of
equivalence class we have that a ∈ [b]E . Thus a ∈ [a]E ∩ [b]E , which
means that [a]E ∩ [b]E 6= ∅. By the first part, this must means that
[a]E = [b]E .

�

Corollary 2.10. The following are equivalent:

(1) a 6 Eb.
(2) [a]E 6= [b]E.
(3) [a]E ∩ [b]E = ∅.

Proof. exercise. �

Definition 2.11. Let E be an equivalence relation on A. The quotient set
of A by E (a.k.a “A modulo E”) is the set of all equivalence classes.6. We
denote it by7

A/E = {[a]E | a ∈ A}
Example 2.12. (1) The “set” Humans/brotherhood consist of all pos-

sible equivalence classes, each equivalence class is the set of siblings
from a given family. We can label each equivalence class according
to the family name and think of the quotient

Humans/brotherhood = {“The Kardeshians”, “The Curry’s”, “The Wright’s”, ...}
(2) A/E = {{1, 5}, {2, 3, 6}, {4}}.
(3) We have that

Z/En = {{zn+ i | z ∈ Z} | i = 0, 1, 2, ..., n− 1}
Since each equivalence class in En is associated with a residue modulo
n, we think of Z/En as the sets of residues modulo n.

(4) The rational numbers are defined as

Q = (Z× (Z \ {0})/R
(5)

R3/H1 = {{〈a, x, y〉 | x, y ∈ R} | a ∈ R}
Here every equivalence class can be identified with a single real num-
ber a.

R3/H2 = {{〈x, y, (s− x− y)〉 | x, y ∈ R} | s ∈ R}
Also here the equivalence classes can be identifies with a single real
number s which represents the sum a+ b+ c.

6Needless to say, without repetitions.
7Do not confused A/E with set difference A \ E.



MATH 215: LECTURE 5- RELATIONS 9

(6)

(P (N) \ {∅})/T1 = {{X ∈ P (N) \ {∅} | min(X) = n} | n ∈ N}
And each equivalence class can be identified with a natural number.

P (N)/T2 = {{X ∈ P (N) | X ∩ Neven = Y } | Y ∈ P (Neven)}
And each equivalence class can be identified with a set of even num-
bers.


